Seeding Induced Assembly of Ionic-Complementary Peptide EAK16-II
نویسنده
چکیده
I herby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. I understand that my thesis may be made electronically available to the public. iii ABSTRACT Seeding is an important variable in controlling or directing the assembly of peptides. The presence of impurities, responsible for creating a 'dip' in the surface tension versus peptide concentration profile, is used to determine the critical aggregation concentration (CAC). This phenomenon is investigated to differentiate crude and high purity EAK16-II peptide. The purified peptide did not show this 'dip' and clearly indicated a critical aggregation concentration for EAK16-II at 0.09 mg/mL by surface tension measurements. Conversely, a surface tension 'dip' is clearly observed for the crude EAK16-II peptide. Atomic Force Microscopy imaged the nanostructures of aggregates. The presence of impurities induces fibre formation below the CAC. This study provides information about the seeding effect of peptide assembly at low concentrations as well as the modification of surface activity of assembled peptide particles. Alanine, glutamic acid and lysine were used as model seeding agents to simulate the seeding phenomenon and better understand the nucleation mechanism of peptide assembly. All amino acid monomers were able to induce fibre formations at low peptide concentrations. However, only glutamic acid and lysine were able to produce the surface tension dip profile observed in the crude peptide. This information may be of importance in understanding fibrillogenesis occurring in conformational diseases and other biomedical applications including drug delivery. iv ACKNOWLEDGMENTS
منابع مشابه
Self/Co-Assembling Peptide, EAR8-II, as a Potential Carrier for a Hydrophobic Anticancer Drug Pirarubicin (THP)—Characterization and in-Vitro Delivery
A short ionic-complementary peptide, EAR8-II, was employed to encapsulate the hydrophobic anticancer drug pirarubicin (THP). EAR8-II was designed to inherit advantages from two previously introduced peptides, AAP8 and EAK16-II, in their self/co-assembly. This peptide is short, simple, and inexpensive to synthesize, while possessing a low critical assembly concentration (CAC). The choice of alan...
متن کاملModification of Hydrophilic and Hydrophobic Surfaces Using an Ionic-Complementary Peptide
Ionic-complementary peptides are novel nano-biomaterials with a variety of biomedical applications including potential biosurface engineering. This study presents evidence that a model ionic-complementary peptide EAK16-II is capable of assembling/coating on hydrophilic mica as well as hydrophobic highly ordered pyrolytic graphite (HOPG) surfaces with different nano-patterns. EAK16-II forms rand...
متن کاملSelf-assembly of the ionic peptide EAK16: the effect of charge distributions on self-assembly.
Amphiphilic peptides suspended in aqueous solution display a rich set of aggregation behavior. Molecular-level studies of relatively simple amphiphilic molecules under controlled conditions are an essential step toward a better understanding of self-assembly phenomena of naturally occurring peptides/proteins. Here, we study the influence of molecular architecture and interactions on the self-as...
متن کاملSelf-assembling peptide-based nanoparticles enhance anticancer effect of ellipticine in vitro and in vivo
BACKGROUND AND METHODS Applications of the anticancer agent, ellipticine, have been limited by its hydrophobicity and toxicity. An efficient delivery system is required to exploit the enormous potential of this compound. Recently, EAK16-II, an ionic-complementary, self-assembling peptide, has been found to stabilize ellipticine in aqueous solution. Here, the anticancer activity of ellipticine e...
متن کاملEffect of amino acid sequence and pH on nanofiber formation of self-assembling peptides EAK16-II and EAK16-IV.
Atomic force microscopy (AFM) and axisymmetric drop shape analysis-profile (ASDA-P) were used to investigate the mechanism of self-assembly of peptides. The peptides chosen consisted of 16 alternating hydrophobic and hydrophilic amino acids, where the hydrophilic residues possess alternating negative and positive charges. Two types of peptides, AEAEAKAKAEAEAKAK (EAK16-II) and AEAEAEAEAKAKAKAK (...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004